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EXECUTIVE SUMMARY 

It is anticipated that ongoing advancement of computational capabilities will make it 

possible to build Autonomous Vehicles (AVs) with a high level of reliability operating under 

various complex situations. AVs can provide travelers with additional benefits and flexibility 

reducing the cost of travel, which, in turn, may lead to increased travel demand. In conjunction 

with the growth of AV technology is an evolving transportation service – Mobility as a Service 

(MaaS) – which can be seen in today’s Transportation Network Companies. Combining the AV 

technology with MaaS creates a new transportation mode – Shared Autonomous Vehicles (SAVs) 

-- that has the promise to re-define the transportation landscape by generating more trips and by 

competing with conventional transportation modes. While it is foreseen that SAVs could 

potentially be on the market in a decade or two, Metropolitan Planning Organizations (MPOs) 

and Departments of Transportation (DOTs) are just beginning to estimate the impacts of SAVs 

on travel behavior. This research fills this gap by investigating the impact of SAVs on travel 

demand in Utah in the 2040 horizon year.  

In this project, we modified the Wasatch Front (WF) travel demand model to estimate the 

impact of SAVs on Vehicle Miles Traveled (VMT). These model modifications were made in 

the trip generation and mode choice modules of the WF travel model. To address the impact of 

SAVs on trip generation, we adjusted the mobility of seniors, people with disabilities or driving-

restrictive medical conditions, and children, demographics that often encounter challenges 

traveling independently. The research assumes that SAVs will improve the mobility of these 

populations for non-work and non-school trips. To accommodate SAVs in the mode choice 

module, a new mode – MaaS -- is added within the motorized branch. The attractiveness of the 

MaaS mode – as expressed in a utility function -- is calculated based on the burden of in-vehicle-

time, initial pick-up time, and operating cost. In order to model the additional benefits and 

flexibility that SAVs offer, we reduced the generalized cost of this mode compared to 

conventional transportation modes. Finally, 12 scenarios are designed and analyzed to 

investigate the impact of various combinations of trip growth and SAV market penetrations on 

VMT.  

Results revealed that SAVs can increase the total number of trips by a range from 1% to 

7% across designed scenarios. Comparing mode shares across scenarios showed that while SAVs 
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can shift mode shares from all conventional transportation modes it competes most effectively 

with auto and non-motorized modes. Higher mode shifts were found for SAV shared ride modes 

when compared to SAV ride alone, partially due to Utah’s demographics, with larger average 

household sizes.  

Analysis of modal shifts by trip purpose showed that for all trip purposes except 

Nonhome-Based (NHB) trips, SAVs compete more with auto and non-motorized modes. For 

NHB trips, transit experiences the largest mode shift to SAVs. Among available transit modes, 

Bus, BRT, and Light Rail are estimated to experience the highest degree of shift to MaaS. An 

analysis of trip length distributions revealed that the SAV mode is more desirable for shorter 

trips than longer ones. Moreover, while reducing the generalized cost of SAVs makes it more 

competitive for longer trips, it does not significantly impact the share of SAVs for shorter trips. 

Eventually, it is observed that SAV increases daily VMT by 4% to 9% across designed scenarios 

due to both improved mobility of underserved population and additional VMT from the 

repositioning of vehicles towards the next rider. 
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1. INTRODUCTION 

1.1 Problem Statement 

Recent advancement of computational capabilities in terms of hardware, algorithms, 

communication architecture, sensing, and navigation devices has made it possible to build 

Autonomous Vehicles (AVs) with a high level of reliability, operating in complex driving 

situations. The Society of Automotive Engineers (SAE) International, building upon the earlier 

work of the National Highway Traffic Safety Administration (NHTSA), has defined automation 

levels from 0 to 5
1
.  

Level 5 vehicles will have the maximum level of automation and can be operated without 

a driver under all roadway and environmental conditions (Miller, et al., 2014). Vehicles with 

lower levels of automation are currently available, equipped with different automation features 

such as adaptive cruise control, lane-keeping systems, and parking assistance, etc. Since 2009, 

Google reported over 5 million miles driven with AVs, mostly on public roads, and expects to 

introduce a commercialized self-driving vehicle around mid-2018 (Lee, 2017). Moreover, most 

of the major automobile manufacturers including General Motors (LeBeau, 2013), Mercedes-

Benz (Andersson, 2013), Nissan (Nissan Motor Company, 2013), and Volvo (Carter, 2012), 

target to sell vehicles with automated driving features by 2020. Although fully automated 

vehicles are not currently available for purchase, it is foreseen that they could potentially be on 

the market in a decade or two (Levin and Boyles, 2015). 

In addition, the number of states in the U.S. considering legislation related to AVs is 

gradually increasing every year. In 2017, 33 states had introduced legislation and 21 states had 

passed legislation related to AVs. While current regulations in most places require the presence 

of a driver behind the steering wheel to take control of the vehicle in case of an emergency, it is 

                                                 
1
 In a Level 0 vehicle, the driver is responsible for the primary vehicle controls (brake, steering, and motive power) 

and also monitoring the road and operation of all other vehicles at all times. Level 1 automation provides function-

specific features such as anti-lock braking. Level 2 automation allows drivers to cede primary control in certain 

situations, but the driver is still expected to monitor vehicle actions and take over driving without advance warning. 

In Level 3 vehicles, the car has greater responsibility for monitoring the traffic and environmental conditions. In this 

level, the car is expected to alert the driver if transition in control is needed. Level 4 vehicles provide similar 

features as Level 3, but they do not require the driver’s attention for safety. Self-driving in Level 4 vehicles is only 

supported in limited areas or under special circumstances. Level 5 vehicles have the maximum level of automation 

and can be operated without a driver under all roadway and environmental conditions (Miller et al., 2014). 
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likely that such requirements might change in the near future (Autonomous Vehicles, 2018). 

Therefore, AVs might be available within the time frame when most of the Metropolitan 

Planning Organizations (MPOs) and Departments of Transportation (DOTs) consider their long-

range transportation plans. 

AVs can provide travelers with additional benefits and flexibility. For instance, travelers 

are able to engage in various activities such as reading, playing video games, and sending emails 

while traveling. They may also have AVs drop them off at their destinations then park elsewhere 

to avoid paying for parking (Levin and Boyles, 2015). AVs might have the potential to increase 

the mobility of children, seniors, and people with driving-restrictive medical conditions by 

eliminating human involvement during driving (Harper et al., 2016). Moreover, AVs could 

substantially reduce the number of crashes due to various human errors such as slow reaction 

time, speeding, driving under the influence, and inexperience. These benefits could lead to a 

significant reduction in the cost of travel, and subsequently more demand for travel and a modal 

shift away from public transport, passenger trains, and air (Wadud et al., 2016). 

While the ownership of AVs can be a big fixed cost, another stream of research has been 

focusing on combining AVs with Mobility-as-a-Service (MaaS). MaaS presents people with 

different mobility options, reducing or eliminating the need to own a private vehicle. It is also 

referred to as shared mobility in certain contexts, and can come in various forms, such as 

personal vehicle sharing, bikesharing, carpooling, vanpooling, ridesourcing and ride-hailing. 

Ridesourcing and ridehailing are typically served by Transportation Network Companies 

(TNCs), leveraging smartphone apps to connect drivers with passengers. Passengers book a car 

through the app to take them to their desired destinations.  

Combining AV technology with MaaS creates a new mode – Shared Autonomous 

Vehicles (SAVs), which could provide inexpensive and flexible on-demand service. SAVs may 

operate on the TNC model, enabling travelers to obtain a ride through a smartphone app. SAVs 

can also relocate themselves to a more favorable location with lower parking cost and higher 

demand. These advances may provide environmental benefits in terms of reduced parking and 

vehicle ownership needs. However, there are potential downsides of such services. For instance, 

the inexpensive cost of this new mobility service could result in more trips and, in turn, higher 

VMT. It could also cause modal shifts from conventional public transit. Moreover, travelers 
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could walk less due to the convenience of on-demand mobility services, with adverse health 

effects. Consequently, while SAVs might have substantial positive impacts in terms of 

improving safety, efficiency, accessibility, and mobility, it could also induce greater travel 

demand and modal shift from public transport and active transportation modes. 

Although there is a close analogy between the SAV and today’s TNC mode, there is a 

key distinguishing factor – that is, since SAV is driverless, its operating cost will be reduced, 

increasing its cost effectiveness.  

Considering additional benefits and flexibility that SAV offers, it has the promise to re-

define the transportation landscape as we know it. To date, long-range transportation planning in 

the state of Utah has not formally accounted for the impact of SAV technology. Consequently, 

there is a need for research to provide useful insight into the impact of SAV on travel behaviors.  

1.2 Objectives 

The primary objective of this study is to estimate the impact of SAVs on VMT in Utah in 

the year 2040 forecast horizon. The results of this research will assist UDOT and WFRC to 

understand the impact of SAVs on travel patterns in terms of increased trip generation and shift 

from traditional modes of travel.  

1.3 Scope 

The primary tool used to explore the impact of SAVs on VMT in Utah is the Wasatch 

Front (WF) Travel Demand Model, a traditional four-step regional travel model. This modeling 

framework enables the research team to investigate key impacts of SAVs on trip generation and 

mode split. However, there are limitations to the detail in the WF model that the project team 

acknowledges which may, in turn, influence how the SAV technology will affect travel in Utah. 

We discuss these limitations in the Conclusions section of the report. 

1.4 Outline of Report 

This report documents the findings of the research and proceeds with the following sections: 
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 Literature Review 

 Research Methods - including a discussion on modifications to the Trip Generation and 

Mode Choice Models 

 Results and Findings 

 Conclusion 
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2. LITERATURE REVIEW 

2.1 Overview 

This research is based on the premise that SAVs will increase mobility for specific 

demographic populations while also resulting in a new mode that will “compete” for trips with 

other modes, including automobile, transit (commuter and light rails, bus) and the non-motorized 

modes. Further, the key analytical tool used to explore the impact of SAVs on VMT in Utah is 

the Wasatch Front Travel Demand Model. Consequently, the literature review conducted for this 

research focuses on the following areas: 

 Efforts to Model SAVs Using Travel Demand Models 

 Impacts of SAVs on Underserved Populations 

 Related Demographic Trends in the Wasatch Front Area 

 Market Acceptance of SAVs 

 Availability of SAVs by Land-Use Type  

2.2 Efforts to Model SAVs Using Travel Demand Models 

In recent years, there has been increased research interest in the area of AVs. AVs 

combined with MaaS has the promise to re-define the transportation landscape as we know it. 

However, much of the literature on AVs has been focusing on the technological hurdles in 

placing AVs safely on the road. In this research synthesis, we attempt to provide a 

comprehensive summary on recent research efforts to investigate the impacts of AVs (or SAVs) 

using travel-demand modeling techniques.  

Previous studies mostly focused on four-step planning models and, more recently, 

activity-based models, to explore the impact of AVs (Levin and Boyles, 2015). The main 

advantage of activity-based models when compared with traditional four-step models lies in their 

capability to predict repositioning trips. However, many practitioners prefer to use four-step 

models due to the additional data and computational resource requirements of activity-based 

modeling.  
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Levin and Boyles (2015) developed a multiclass four-step model and used a generalized 

cost function of travel time, monetary fees, and fuel consumption to assess the impact of AV 

ownership on trip, mode, and route choice behaviors. Three modes of transportation including 

car, transit, and AV are considered via a nested logit model. AV users were assumed to have the 

option of either parking the vehicle (with a parking fee) or sending it back to the origin (with no 

parking fee and incurring fuel costs). Static link performance functions were modified to predict 

capacity improvements due to AVs on each link. Travelers seek to minimize a generalized cost 

of travel time, fuel, and parking fees. It is assumed that market penetration, trip productions and 

attractions are known. The proposed model was tested on the Austin downtown network 

considering bus routes. Results revealed that parking cost was a main incentive for transit use, 

and the presence of AV round-trip caused a reduction in transit demand. They predicted a 61.4% 

reduction in transit ridership as a result of lower costs of AVs. 

Hörl (2016) used an agent-based transport simulation model, MATSim, to simulate AVs. 

Four modes of transportation including public transport, private car, autonomous taxi, and 

walking are considered in this study. Individuals select their transportation modes such that 

travel disutility is minimized. Travel disutility for each mode is defined as a function of mode-

specific disutility, travel time, and travel cost. The city of Sioux Falls in South Dakota was 

selected as a test case for the proposed model. Results revealed that the AV mode mainly 

decreased the share of public transport and walking, meanwhile, it also enabled the shifts of 

previously private vehicle users. The presence of AVs reduced the average travel distance for 

public transport and walking agents because long trips in these modes will be replaced by AVs. 

Moreover, AVs were found to increase VMT which has negative effects on both the environment 

and congestion. They concluded that the availability of AVs without administrative regulation 

will attract mode shifts from all the other three modes (i.e. public transport, walking and private 

car), and will attract more public transport users than private car users.  

Zhang et al. (2015) applied an agent-based model to explore potential benefits of SAVs 

with Dynamic Ride Sharing (DRS). Vehicle trips were generated based on the 2009 National 

Household Travel Survey (NHTS) data for an imaginary 10-mile by 10-mile grid-based city. 

They assumed that two individuals may share their ride voluntarily if both of them are willing to 

share rides with strangers and the higher delay due to ridesharing can be offset by travel cost 
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reductions. They reported that SAV with DRS can provide a better level of service compared to 

SAV without DRS by reducing trip delay and costs, providing more reliable service particularly 

in peak hours, and generating less VMT.  

The model results indicated that the average delay per trip is approximately 13% lower 

throughout the day with the presence of SAV with DRS, and around 37% lower during peak 

hours. Moreover, availability of SAV with DRS was found to generate 4.74% less VMT 

compared to SAV without DRS.  

Childress et al. (2015) assessed the potential change in travel patterns in the Puget Sound 

region in the state of Washington using an activity-based model. They modeled AV under 

assumptions of four different scenarios. The first scenario assumes that AVs use existing 

facilities more efficiently and increase all freeway and major arterial capacities by 30%. The 

second scenario is built on the first scenario assuming that along with capacity improvements, 

travelers using AVs will perceive in-vehicle time less burdensome compared to driving in 

regular vehicles. In the third scenario it is assumed that all cars are self-driving and none are 

shared. Similar to the third scenario, all cars are assumed to be automated in the final scenario 

but the main difference is the consideration of SAVs. Table 2.1 summarizes assumptions used in 

these four scenarios. To investigate potential effects of AVs, the model outputs from scenario 1 

through scenario 4 were compared with the 2010 baseline.  Scenarios with a capacity increase 

(scenarios 1 through 3) experienced increased VMT, ranging from about 4% to 20%.   

Table 2.1 Assumptions for the Four Scenarios in Childress et al. (2015) 

Assumptions Scenario 1 Scenario 2 Scenario 3 Scenario 4 

1 

30% capacity 

increase on 

freeways and 

major arterials 

30% capacity 

increase on 

freeways and 

major arterials 

30% capacity 

increase on 

freeways and 

major arterials 

All trips are 

provided by 

AV/SAV 

2 
 

 

The value of time 

was reduced from 

$24 to $15.6/h for 

the highest income 

households 

The value of time 

was reduced from 

$24 to $15.6/h for 

all households 

 

System provides 

the same service 

as private cars but 

at a higher rate 

($1.65/mi) 

3     

 

50% parking cost 

reduction 
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Fagnant et al. (2015) investigated the potential implications of AVs at a low market 

penetration (1.3% of regional trips). They used an agent-based model to simulate SAVs in a 

dense urban area of Austin, Texas. Results indicated that each SAV can replace 9 private 

vehicles, but it increases VMT by 8% due to repositioning trips. In another study, Fagnant and 

Kockelman (2018), advanced an existing model by enabling DRS, optimizing fleet size, and 

anticipating profitability for private operators. They showed that availability of SAVs with DRS 

can limit the VMT increase to 4.5%. Increased market penetration resulted in greater VMT 

reduction compared to non-SAV fleet. Moreover, they reported that DRS may significantly 

reduce waiting time, particularly during peak hours.  

Figure 2.1 illustrates different ranges of VMT increase estimated by previous studies. 

Many of these studies are reviewed above (Childress et al., 2015; Fagnant et al., 2015; Fagnant 

and Kockelman, 2018; Zhang et al., 2015). 

 

Figure 2.1 Ranges of VMT Increase Estimated by Previous Studies 

Several studies explored the number of vehicles that each SAV could potentially replace. 

Figure 2.2 summarizes findings of these studies. Bischoff and Maciejewski used an agent-based 

model to assess the impact of ATs on traffic conditions in Berlin, Germany. Results revealed that 

one AT could satisfy the demand served by ten conventional taxis.  
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For Lisbon, Martinez (2015) reported that each SAV with DRS could replace ten private 

vehicles while SAVs without DRS could only replace six private vehicles. For Singapore, 

Spieser et al. (2014) suggested that SAVs could meet the mobility needs of the entire population 

with a fleet size of 1/3 of the conventional passenger vehicles.  In another study for Ann Harbor, 

Michigan, a fleet reduction to 15% was estimated with the presence of SAVs.  

 

Figure 2.2 Estimated Number of Private Vehicles That Could be Replaced by Each SAV  

Availability of SAVs might gradually replace public transport due to its flexibility, 

convenience, and lower costs. A few studies investigated the impact of AVs and shared mobility 

services on modal shifts from conventional public transport to vehicle use. For example, Shaheen 

et al. (2015) analyzed the impact of on-demand ride services on trip mode choice with a survey 

of 380 TNC users in San Francisco, California. Results indicated that if ridesourcing was 

unavailable, 39% of TNC users would have taken a taxi, 33% would have taken a bus or rail, and 

8% would have walked.  

Malokin et al. (2015) investigated the impact of travel-based multitasking on mode 

choice. They developed a revealed preference Multinomial Logit (MNL) Model based on a 

survey of 2,120 Northern California commuters to predict mode choice as a function of modal 

characteristics, socio-economic factors, individual attitudes, and activities conducted during 

commuting. Results revealed that availability of AVs could result in up to 1% modal shift, 

mainly from local public transport (bus, light rail, subway), bicyclists, and shared-ride and drive-

alone modes.  
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In another study, Hörl (2016) reported that the presence of AVs could attract 14%, 44%, 

and 56% shares of car, public transport, and walking modes, respectively (see Figure 2.3). 

Clewlow and Mishra (2017) assessed the impact of ride-hailing services (carsharing and 

ridesharing services) on travel behavior using a survey deployed in seven major U.S. cities. They 

found that the presence of on-demand mobility service could decrease shares of public bus, light 

rail, and bike by 6%, 3%, and 2%, respectively (see Figure 2.4). Shen et al. (2017) studied the 

role of AVs in the public transportation system and proposed a possibility to integrate SAV as a 

complementary feeder service in the public transit system for solving the last-mile problem. 

They reported that increasing AV fleet size resulted in higher vehicle kilometers traveled (VKT).  

 

Figure 2.3 Percentage of Modal Shift from Different Transportation Modes to AV (Hörl, 

2016) 
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Figure 2.4 Changes in Mode Shares after Adoption of Ride-Hailing Services (Mishra, 2017) 

2.3 Impacts of SAVs on Underserved Populations 

Many seniors (over the age of 65), people with disabilities or medical conditions, and 

children, often encounter challenges traveling independently and must rely on family members, 

friends, government services, and other service providers to meet their mobility needs. For 

example, Sweeney (2004) reported that on average the disabled population leaves home less 

often (4.8 days per week) than the non-disabled population (6.1 days per week). AVs present a 

unique opportunity for these mobility-impaired populations to travel freely and independently, 

reducing travel disutility. By providing a new mobility option, AVs can lead to increased trip 

making and increased VMT from seniors, children, and populations with mobility impairments 

(Anderson et al., 2014).         

Based on the Current Population Survey (CPS), there were about 34.2 million people in 

the U.S. age 65 and older in 2003 (U.S. Census Bureau, 2003). The population of seniors had 

increased to almost 43.3 million (about a 27% increase) in 2013 and is expected to continue 

growing in both absolute terms and relative to the rest of the population (U.S. Census Bureau, 

2003 and 2013). In 2030, it is projected that roughly 74 million seniors will be living in the U.S., 

which represents almost 26% of the total U.S. population (Rosenbloom and Winsten-Bartlett, 

2002). An increase in seniors’ travel demands in the future will create a challenge to 

transportation systems in providing reliable and efficient service. This highlights the importance 
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of studies to provide insight on the potential future increases in total travel demand from these 

underserved populations under the influence of vehicle automation. 

Several studies attempted to predict the magnitude of the potential future increase in total 

travel demand from underserved populations made possible by AV technology. For instance, 

Harper et al. (2016) estimated bounds on the impact of AVs on VMT by the current U.S. 

population (age 19 and older) under the scenario of increased demand from currently 

underserved populations (see Figure 2.1). The study only focused on changes in travel behaviors 

of the elderly, non-driving populations, and those with a travel-restrictive medical condition, 

while AVs could also increase travel of working age drivers (ages 19-64) without medical 

conditions by increasing the ease of travel. They used the 2009 NHTS which describes travel 

characteristics of the U.S. population (USDOT, 2011). In order to estimate an upper bound for 

VMT from underserved populations due to the presence of AVs, three demand wedges with 

distinct travel behaviors were developed. It is assumed that with the advent of AVs, each person 

within these populations will increase their annual VMT to a threshold similar to that of a 

younger or comparable population group (e.g., drivers with no medical restrictions) that 

currently drives more. They showed that if all three demand wedges were assumed to occur 

simultaneously, total annual light-duty (car, van, SUV, pickup truck) VMT by the U.S. 

population (age 19 and older) would increase by 14% or 295 billion miles. Non-drivers were 

found to have the most contribution to VMT increase by 194 billion miles (9%) while elderly 

drivers and those with medical conditions increased VMT by 46 billion miles (2.2%) and 55 

million miles (2.6%), respectively.  

Wadud et al. (2016) estimated an upper bound increase in travel due to new demand from 

the underserved population. Using NHTS, they showed that the 35-55 age group is the group 

with the largest fraction of drivers. To address the improved mobility due to AV, they assumed 

that AV results in the identical share of drivers across all age groups. They also used the data 

from NHTS and showed that VMT per driver peaks at age 44, then reduces steadily through age 

62, and more steeply declines above the age of 62. The steady decline between ages 44 and 62 is 

assumed to represent a natural rate of decline in travel needs while the sharp decline is assumed 

to represent reduced travel from impaired driving ability. To capture the impact of AVs they 
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assumed that drivers above 62 will travel as much as drivers of 62 years old. Results revealed 

that annual VMT could rise up to 10% from increased travel demand due to new users.  

Brown et al. (2014) attempted to quantify the impact of automation on energy 

consumption using the 2009 NHTS and the 2003 “Freedom of Travel” study. They considered 

the increased travel demand from currently underserved groups and from demand induced by 

reduced congestion and higher travel speed. Due to increased safety of AVs and also more 

efficient use of roadway capacity, faster speed and reduced congestion are assumed. 

Correspondingly, they assumed that VMT increases so as to maintain total time spent traveling. 

To capture travel demand from underserved populations, they assumed that population segments 

from age 16 to 85 would begin to travel as the top decile. Results revealed that automation could 

increase VMT as much as 40%. 

2.4 Related Demographic Trends for the Wasatch Front Area 

According to Utah’s long-term demographic and economic projections conducted by 

Kem C. Gardner Policy Institute (Gardner Policy Institute, 2018), the trends of youth and elderly 

population in the Wasatch Front are shown in Figure 2.5. It is observed that from years 2018 to 

2065, the elderly population in the Wasatch Front will increase from 396,646 to 1,231,401 (a 

210% increase), and the youth population will also increase from 1,066,384 to 1,223,716 (a 15% 

increase).  
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Figure 2.5 Population Projection for the Wasatch Front Area 

American Community Survey (ACS) compiles continuous demographic and socio-economic 

data based on questionnaires sent by mail to over 3.5 million households across the country 

annually (Wei et al., 2017). The survey estimates the disabled population by disability type and 

by age group for each census tract within Utah. Figure 2.6 illustrates the distribution of Utah 

disabled population by census tract based on 2012-2016 ACS data.  
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Figure 2.6 Distribution of Utah Disabled Population by Census Tract 

2.5 Market Acceptance of SAVs 

A myriad of studies has used online surveys to assess public opinion and perception 

towards AVs. Bansal et al. (2016) investigated public opinions on smart-car technologies using 

an internet-based survey of 347 adult residents of Austin, Texas. Results indicated that average 

Willingness to Pay (WTP) for adding Level 4 automation ($7,253) is much higher than that of 

adding Level 3 automation ($3,300) to conventional vehicles. Individuals who travel more 

(higher VMT) and those living farther from their workplace exhibited higher WTP for Level 4 

compared to Level 3 automation. Elderly people were found to have significantly lower WTP for 

AVs due to unfamiliarity with new technologies.  

They reported that more than 80% of the population appears unwilling to pay more for an 

SAV service than what current carsharing and ridesharing companies are charging. For trips with 

short duration during the day, 51% of respondents stated that they are comfortable with sharing a 

ride with a stranger. Schoettle and Sivak (2015) conducted a web-based survey to understand 
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public opinions regarding various levels of vehicle automation. The survey targeted drivers 18 

years and older in the U.S. Results indicated that respondents most frequently preferred no self-

driving (45.8%) compared to partially self-driving (38.7%) and completely self-driving (15.5%). 

Preference for having vehicle automation was found to decrease as respondent age increases. 

While 45.2% of elderly respondents (60 years and older) were very concerned about riding in a 

fully self-driving car, only 26.1% of younger respondents (18-29 years old) were very concerned. 

Females also exhibited greater concern about riding fully self-driving vehicles than men. Piao et 

al. (2016) used an online survey supplemented with several telephone interviews in La Rochelle 

to explore user acceptance of ride-sharing AVs. A sample of respondents 18-65 years old was 

asked to compare automated buses, cars, and taxis with conventional versions of these vehicles. 

They reported that the majority of the population was positive about automated vehicles if they 

could offer cheaper service, more space, and more frequent service. Safety and security were two 

major concerns regarding automated vehicle use, particularly at night. Krueger et al. (2016) 

conducted a stated preference survey and used a mixed logit model to explore critical 

determinants of SAV use and the acceptance of dynamic ridesharing (DRS). They surveyed 435 

residents in major metropolitan areas in Australia. Results revealed that service attributes 

including travel time, waiting time, and fares are crucial determinants for SAV usage and DRS 

acceptance, and younger travelers are more likely to choose SAVs with DRS. Moreover, it was 

found that current carsharing users are more likely to use SAVs with DRS. While respondents 

who traveled by car as the driver on the reference trip (i.e. a trip recently made by the 

respondent) are more likely to use SAVs without DRS, those who traveled by car as a passenger 

on the reference trip are more likely to use SAVs with DRS. Travelers who exclusively rely on a 

private car might be reluctant to use an SAV while multi-modal travelers are more likely to adopt 

SAVs to facilitate their multimodality.  

Abraham et al. (2016) conducted an online survey in the U.S. to investigate satisfaction 

with current in-vehicle technology and inclination to use various levels of automation. Results 

exhibited that older adults (75 years and older) are less likely to use new mobility solutions such 

as carsharing (3.9%) and ridesharing (16.2%). They found that younger adults are generally more 

comfortable with fully automated cars compared to older adults. While 40% of participants aged 

25 to 34 selected full automation as the maximum level of automation they would be 

comfortable with, only 12.7% of participants aged 75 and more chose the same level.  
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Kyriakidis et al. (2015) conducted a web-based survey with 5,000 respondents from 109 

countries to explore user acceptance and willingness to use various levels of automation. Results 

indicated that most respondents found manual driving as the most enjoyable mode. Respondents 

were willing to pay more for full automation than partial automation. Of all respondents, 22% 

stated that they were willing to pay nothing ($0) for full automation, while 5% indicated they 

would be willing to pay more than $30,000 for full automation. 

All of these studies are based on conventional research approaches such as surveys. 

However, since AVs have not been commercialized yet, respondents do not have real world and 

concrete experiences with them and may under- or over-value such new technology. This can 

significantly limit the validity of the results.  

As mentioned in previous sections, AVs could have positive impacts on safety, mobility, 

accessibility, congestion, and the environment. Successful implementation of AV technologies 

requires public acceptance and adoption over time (Heide and Henning, 2006). There are various 

contributing factors to AV adoption including both demand-side factors (e.g., willingness to pay) 

and supply-side factors (e.g., price, infrastructure). Several studies attempted to predict future 

adoption rates of AV technology. Figure 2.7 summarizes the findings of these studies.  

Bansal and Kochelman (2017) considered various demand-side factors, such as 

willingness to pay (WTP), vehicle transition decisions, and government regulations on vehicle 

production along with supply-side factors, such as costs, and technological updates over time. 

They developed a simulation-based framework to forecast long-term (i.e. year 2045) adoption 

levels of AV technologies under eight different scenarios based on 5% and 10% annual drops in 

technology price, 0%, 5%, and 10% annual increments in WTP; and changes in government 

regulation (e.g., mandatory connected vehicle technology). Results revealed that under various 

assumptions, Level 4 AVs are likely to be adopted by 24.8-87.2% of the vehicle fleet in 2045. 

Lavasani et al. (2016) developed a market penetration model for AV technology adoption based 

on similar technology adoption in the past. They incorporated AV price and economic wealth 

into the models. Results showed that AV adoption increases to 79% by year 2045 and eventually 

the market will reach saturation in 2059.  
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Figure 2.7 Future Adoption Rates of AV Technology 

2.6 Availability of SAVs by Land-Use Type (Urban, Suburban, Rural) 

Although most studies on SAVs focused on the applications in urban areas, some 

researchers considered the performance of SAVs in suburban or rural areas where trips have 

different features than urban trips, e.g., long travel distance, with absence of public transit, and/or 

long wait time (Bösch et al., 2017; Burns et al., 2013; Chen and Kockelman, 2016; Lavieri et al., 

2017; Liu et al., 2017; Meyer et al., 2017). Table 2.2 provides a summary of the land-use type 

that each study touched upon as well as the topic of interest.  

Table 2.2 Summary of Land-Use Type Studies and Topic of Interest 

Study Land-use type Topic of interest 

(Burns et al., 2013) Small urban and suburban; 

small to medium city; large 

urban area 

Travel costs 

(Bösch et al., 2017) Urban; suburban and exurban Costs of personal mobility 

system 

(Lavieri et al., 2017) High-density living area; low-

density living area 

Utility of SAV 
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(Liu et al., 2017) Urban; suburban; exurban Transportation pattern with 

SAV 

(Chen and Kockelman, 2016) Downtown; urban; suburban; 

exurban 

Market potential 

(Meyer et al., 2017) City; countryside Travel demand and 

accessibility 

 

Burns et al. (2013) evaluated the performance of a new personal mobility system 

consisting of SAV fleets in three distinctly different areas: Babcock Ranch, Ann Arbor, and 

Manhattan. These three areas were selected as being representative of small urban and suburban 

areas, small to medium cities, and large urban areas with well-developed public transit systems 

in the U.S. The system performance was quantified as a cost reduction by switching from 

personal car ownership to the personal mobility system. For each case, they initially obtained the 

original travel data in the study area, including number of trips, trip duration, trip distance, speed, 

and number of passengers. Then they conducted a simulation to estimate the number of AVs to 

provide the same coverage with a reasonable wait time. Once the fleet sizes became known, they 

estimated the costs of owning and operating the autonomous fleets and compared with the costs 

of personal car ownership. They found that the personal mobility system can effectively reduce 

travel costs compared with personal car ownership: in small urban and suburban areas, the cost 

would be $4 per day per person, or under $2 per trip on average; in small to medium-sized cities, 

the travel cost is reduced from $1.6 per mile to $0.15 per mile; and in large urban areas with 

well-developed public transit systems, the cost is reduced from $4 per mile by taxi to $0.50 per 

mile. Besides the cost savings, they found that the fleets result in great efficiency and 

convenience. 

Bösch et al. (2017) aimed to identify a suitable operational model for SAVs in urban and 

regional settings (suburban and exurban), by comparing the costs of such service with traditional 

public transit. A series of assumptions in terms of costs and cost structures have been made in 

estimating the costs of SAV service, private car, and public transit. They assumed several cost 

changes related to SAVs. For example, SAVs can reduce driver labor costs but increase 

maintenance costs, especially cleaning costs, since the passengers may be more irresponsible in 

the vehicle in the absence of a driver. Vehicle automation will increase the purchase price but 
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decrease insurance costs since SAVs provide safer driving than human drivers. By comparing the 

costs in urban and regional settings, they found that public transit will still be economically 

competitive in dense urban areas, where it can be offered at lower prices. In the areas where 

demands cannot be bundled, SAVs will be more efficient. But whether SAV is the most efficient 

alternative still depends on the costs of purchase, operation, and maintenance.  

Liu et al. (2017) conducted a large-scale micro-simulation of transportation patterns in a 

metropolitan area and its vicinity when relying on a system of SAVs. Multiple fare levels of 

SAVs have been tested in the simulation. They found that with the increase of the SAV fare rate, 

SAVs are less likely to be chosen, especially in rural areas where trips are likely to be longer. For 

lower SAV fare rates ($0.5 or $0.75 per mile), SAVs are preferred in rural areas over human-

driven vehicles, but for higher fare rates ($1.0 or $1.25 per mile), SAVs are more favorable in 

urban areas. Chen and Kockelman (2016) explored the market potential of shared autonomous 

electric vehicles (SAEV) with a multinomial logit mode choice model in a hypothetical domain 

with four zones: downtown, urban, suburban, and exurban. In their model, SAEV competes with 

privately-owned AVs, human-driven vehicles, and city buses. SAEV speed, parking fee, and 

transit access and wait time in the utility functions vary by zone. They also designed four pricing 

schemes for SAEV: distance-based, origin-based, destination-based, and a combination of origin 

and destination. Their results showed that SAEVs replace former short transit trips between 

zones, especially in suburban and exurban zones, due to shorter wait times. In Meyer et al. 

(2017), they modeled the travel demand and estimated the accessibility in Switzerland when 

private vehicle ownership has been fully replaced by SAVs. They found that the increase in 

demand varies from 0 in some rural areas to 180% in Zurich city center. Another finding was 

that in 85% of the region, the accessibility is improved, but the remaining 15% - mostly cities - 

suffers accessibility losses. When weighted by population, the national average accessibility only 

increases by 1.4%, meaning that the accessibility losses in cities offset the gains in the 

countryside.  

In summary, this literature review supports the following approach to investigating the 

question of how SAVs would affect VMT in Utah: 

1) A four-step travel model is a useful tool for exploring this question. For this research, the 

WF Travel Demand Model is an appropriate analytical tool. 
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2) The trip generation module of the WF Travel Model enables an analysis of increased 

mobility for households with youth and elderly members, and people with travel- 

restrictive medical conditions.  

3) A fully evolved “Shared Autonomous Vehicle” represents a new mode of travel – 

Mobility as a Service (MaaS) -- that has lower or competitive operating costs when 

compared to other modes for similar trips. 

4) The competitiveness of MaaS to other modes will depend on travel time and cost 

competitiveness which, in turn, are somewhat dependent on the land-use types served by 

each mode. 

5)  The WF Travel Model can be used as a scenario evaluation tool, where low, medium, 

and high impacts along both the trip generation and mode share dimensions can be 

explored. 
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3. RESEARCH METHODS 

3.1 Overview 

In order to estimate the range of VMT changes due to SAVs, the current version of WF 

travel demand model is modified to represent low-, medium-, and high-impact scenarios. These 

model modifications were made mainly on trip generation and mode choice modules. The 

following sections describe WF travel demand model and modifications made to WF trip 

generation and mode choice modules in order to accommodate SAVs in the current version of 

the model. 

3.2 WF Travel Model 

In order to capture the impact of SAVs on VMT, we modified the WF travel demand 

model, which is maintained jointly by WFRC and MAG. It is a trip-based travel model that 

estimates the movement of people and vehicles within the 4-County (Weber, Davis, Salt Lake, 

and Utah) urbanized area during an average spring/fall weekday.  

The research used model version 8.2. The model includes auto, transit, and non-

motorized modes. Transit is comprised of bus, BRT, light rail, and commuter rail. The model is a 

zone-based forecasting tool, modeling travel between land uses aggregated into Transportation 

Analysis Zones (TAZs). There are 2,263 TAZs including 20 external TAZs in the model. Figure 

3.1 shows model TAZ structure.  

The socioeconomic data and developable acres in a TAZ are used to calculate the 

urbanization value for each TAZ. The urbanization value is calculated as follows: 

                                                                (3-1) 

Where              denotes the total population of one zone plus four closest neighbor zones, 

             is the total employment of one zone plus four neighbor zones, and 

                  is the total developable acres of one zone plus four neighbor zones. 
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Figure 3.1 WFRC/MAG Travel Model TAZ Structure (yellow represents WFRC/MAG 

TAZs) 
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The urbanization value is used to categorize the TAZs into one of the five area types, 

shown in Table 3.1. TAZs area types for years 2011 and 2040 are determined based on 

urbanization values visualized in Figure 3.2. 

Table 3.1 Urbanization Threshold Used to Determine TAZ Area Type 

Urbanization Area Type 

0 - 1 Rural 

1 - 5 Transition 

5 - 15 Suburban 

15 - 45 Urban 

> 45 CBD 

 

 

Figure 3.2 Area Types for Years 2011 and 2040 



27 

 

The road network in the model includes facilities functionally designated as collector or 

above by UDOT and some local roads in the 2011 base year. There are approximately 27,000 

road links in the base year network. The transit network in the model includes all Utah Transit 

Authority (UTA) bus and rail routes, excluding ski routes, vanpools, and commuter buses to 

specific employers. The transit network distinguishes local buses, enhanced buses, express buses, 

BRT, light rail, and commuter rail. Future year 2040 roadway and transit networks are developed 

for the model consistent with the regional transportation plan.  

The WF travel demand model is a classic four-step model consisting of four sub-models: 

 trip generation;  

 trip distribution;  

 mode split; and  

 trip assignment.  

Figure 3.3 shows the conceptual overview of the WF model. The model has a feedback 

loop between trip distribution and traffic assignment which ensures consistency between 

congestion and travel times that influence trip distribution patterns. The trip generation model 

first estimates trip-ends by TAZ based on household and employment characteristics. 

Households are stratified jointly by life cycle, income, household size, and number of workers. 

Three different life cycle categories are considered in the model as follows: 

 LC1: Households with no children and no seniors 

 LC2: Households with children and no seniors 

 LC3: Households with seniors (may have children) 

The trip distribution model then pairs generated trip-ends into trips. In the mode choice 

model, a mode of travel is identified for each trip. Vehicle trips are assigned to the highway 

network in the trip assignment model, during which congestion levels on each road are estimated 

consistent with route choices. Transit trips are assigned to the transit network in the mode choice 

step. 
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Figure 3.3: Conceptual Overview of the WFRC/MAG Travel Model 

The trip generation and trip distribution models are daily models, while the mode choice 

model distinguishes peak and off-peak periods. The traffic assignment model estimates traffic 

flow for four periods of the day: 

 AM Peak: 6 - 9 AM 

 Midday: 9 AM – 3 PM 

 PM Peak: 3 – 6 PM 

 Evening/Off-Peak: 6 PM – 6 AM 

The model includes several trip purposes. Trip purposes are grouped into three main 

classifications: person trips, commercial vehicle/truck trips, and external vehicle trips. Person 

trips are further categorized by different trip purposes, as follows: 

 Home-Based Work Trips (HBW): Trips made between the traveler’s home and the 

place of work, in either direction.  

 Home-Based College Trips (HBC): Trips made between the traveler’s home and 

college.  

 Home-Based School Trips (HBSch): Trips made between the traveler’s home and 

school. HBSch trips include kindergarten through high school.  

 Home-Based Shopping Trips (HBShp): Trips made between the traveler’s home and 

shopping (e.g. retail) locations.  

 Home-Based Other Trips (HBOth): Trips made between the traveler’s home and all 

other non-work-related destinations not already accounted for by the previously defined 

trip purposes.  

 Non-Home-Based Work Trips (NHBW): Trips made between the traveler’s work and 

some other non-home location.  
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 Non-Home-Based Non-Work Trips (NHBNW): Trips made between non-home and 

non-work locations.  

 

The trip generation and distribution models include the most detailed information in 

terms of trip purposes. After trip distribution, the HBShp and HBOth trip purposes are combined 

into an HBO category, and NHBW and NHBNW are combined into NHB.  

The model is calibrated to represent 2011 base-year  travel conditions by adjusting model 

input data, assumptions and parameters so that intermediate and final outputs could closely 

match observed data. Model outputs are validated against real-world data. Origin-Destination 

flows, roadway vehicle volumes, vehicular travel times and speeds, and transit ridership are 

some of the model outputs used for validation. For future forecast years, the model output is 

reviewed for "reasonableness" to validate model results.  

3.3 Trip Generation Modifications 

Previous studies reveal that SAVs can increase the mobility of specific underserved 

populations. Many seniors, people with travel-restrictive disabilities or medical conditions, and 

children, often encounter challenges traveling independently and must rely on family members, 

friends, and other service providers to meet their mobility needs.  

In this research we assumed that SAVs will improve the mobility of these populations for 

non-work and non-school trips. Since work-based and school-based trips are among those 

necessary trips that every traveler including underserved populations is regularly making, it is 

not expected that SAVs will affect much the number of these specific trip purposes. SAVs may, 

however, increase trip making for other, discretionary trips. To address the improved mobility of 

underserved population, the following modifications are made to the WF demand model:  

3.3.1 Impact on households with children and elderly 

To capture the improved mobility of children and elderly members in the WF model, we 

increased the trip rates of households classified under LC2 and LC3 for non-work and non-

school trip purposes. It is assumed that before the introduction of SAV, children and elderly 

members of high-income households have higher mobility than lower income households since 



30 

 

they are less constrained by travel costs. Based on this assumption, we can expect that the 

availability of the SAV mode can provide the same mobility for lower income households. Thus, 

SAVs will increase trip generation rates for lower income households toward the trip generation 

rates of higher income households.  

The 2012 household travel diary data is used to extract the high-income household trip 

generation rates by life cycle and household size for three trip purposes: HBO, HBShp, and 

NHBNW. Once these rates are calculated, the trip rates for different trip generation scenarios are 

calculated as follows: 

      
                

                       
                

  (3-2) 

where       
 and                

 denote the trip generation rates for households with life cycle 

 , size  , and trip purpose   in scenario   and base year scenario, respectively.                   
 

represents the trip generation rate for households with life cycle  , size  , and trip purpose   for 

high-income population and    is the adjustment factor for scenario  .  

When    is 1, the trip generation rates for all income categories are set to those of high-income 

households. When    is 0, the trip generation rates for all income categories are set to those of 

the base model (null or “no build”).  Different values for    are used to populate three scenarios 

with different trip generation growth. For low-, medium-, and high-trip generation scenarios,    

is set to 0.1, 0.5, and 1, respectively.   

  

Figure 3.4 shows the trip rates of households under LC2 and LC3 categories for non-

work and non-school trip purposes against household size. Grey and yellow plots show the 

trends of trip rate increase before improving the mobility of LC2 and LC3. The blue and orange 

plots illustrate the same trends after improving the mobility for LC2 and LC3 households. As 

shown in this figure, for most households, trip rates increase as the household size increases. 

Moreover, the trends of the trip-rate increase are consistent before and after the mobility 

improvement. There are three cases that the trends of trip rate increase after mobility 

improvement are not consistent with that of before improvement. This might be explained with 

small sample size of households within these categories in household travel diary data. These trip 
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rates are adjusted to follow the same trend as before mobility improvement (as shown in the 

second column of graphs in Figure 3.4 titled “After Adjustment”) 

  

Figure 3.4: Trip Rates Before and After Adjustments (TR: Trip Rate before SAV and 

NTR: New Trip Rate after SAV, Considering Improved Mobility of Children and Elderly 

Populations)  
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3.3.2 Impact on Mobility-Impaired Populations   

SAVs can potentially increase the mobility of the mobility-impaired population (i.e. 

people with driving-restrictive medical conditions) for non-work and non-school trips. Ideally, 

SAVs would enable a mobility-impaired traveler to generate the same number of trips as a 

traveler with no impairment. The current WF travel model does not differentiate between people 

with driving-restrictive medical conditions and those without. Thus, it can be assumed that the 

current model trip generation rates are weighted average of trip generation rates for disabled and 

non-disabled population as follows: 

                            (3-3) 

where        denotes trip generation rates in the base model,      and       represent the 

trip generation rates of households with and without mobility-impaired members in the study 

region, and     and      are the percentages of households with and without mobility-

impaired members in the study region. We assumed a trip reduction (or suppression) rate (TRR) 

for households with mobility-impaired members and calculated trip rates for those households as 

follows: 

                   
(3-4) 

 

Based on the finding of Sweeney (2004), the trip suppression rate for households with 

mobility-impaired members is assumed to be 20%, meaning that households with mobility-

impaired members on average generate 20% fewer trips than households without mobility-

impaired members.  

The percentage of households with mobility-impaired members within the study region is 

obtained from 2012-2016 ACS which was collected at the census tract level. Finally, the trip 

generation rates for households without mobility-impaired members are calculated as: 

      
      

                     
 (3-5) 
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To populate scenarios with various trip generation growth rates, TRR is adjusted to 

smaller values reflecting various levels of mobility improvements for households with mobility-

impaired members. When TRR is 20%, the trip generation rates are equal to the base model trip 

generation rates; when TRR is 0%, households with mobility-impaired members are assumed to 

generate the same number of trips as households without mobility-impaired members. For this 

research, 15%, 10%, and 0% TRR are respectively assumed for low-, medium- and high-trip 

generation scenarios.  

Using equation 3-3, trip rates increased due to the improved mobility of households with 

mobility-impaired members are estimated. This results in trip rate increases of 0.3%, 0.5%, and 

1% for low-, medium-, and high-trip generation scenarios, respectively. Table 3.2 summarizes 

the modified trip rates and their increase percentage to capture the improved mobility of 

underserved population in the WF trip generation model.  

Table 3.2 Modified Trip Rates for Different Trip Generation Scenarios 

HH 

Size 

Life 

Cycle 
Trip 

Purpose 

Base 

Model 

Rates 

Low Scenario Medium Scenario High Scenario 

Increase 

Percentage 

Trip 

Rate 

Increase 

Percentage 

Trip 

Rate 

Increase 

Percentage 

Trip 

Rate 

1 1 HBOth 1.301 0.30 1.305 0.50 1.308 1.00 1.314 

2 1 HBOth 2.322 0.30 2.329 0.50 2.334 1.00 2.345 

3 1 HBOth 3.569 0.30 3.580 0.50 3.587 1.00 3.605 

4 1 HBOth 5.214 0.30 5.230 0.50 5.240 1.00 5.266 

5 1 HBOth 7.265 0.30 7.287 0.50 7.301 1.00 7.338 

6 1 HBOth 9.5685 0.30 9.597 0.50 9.616 1.00 9.664 

2 2 HBOth 2.634 2.05 2.688 9.26 2.878 18.61 3.124 

3 2 HBOth 4.128 1.15 4.175 4.75 4.324 9.54 4.522 

4 2 HBOth 5.784 0.47 5.811 1.35 5.862 2.71 5.941 

5 2 HBOth 7.826 0.54 7.868 1.71 7.960 3.42 8.094 

6 2 HBOth 9.9762 0.64 10.040 2.22 10.198 4.46 10.422 

1 3 HBOth 1.785 1.63 1.814 7.15 1.913 14.36 2.041 

2 3 HBOth 3.558 0.68 3.582 2.40 3.644 4.83 3.730 

3 3 HBOth 3.569 0.57 3.590 1.88 3.636 3.77 3.703 

4 3 HBOth 4.461 0.50 4.483 1.48 4.527 2.98 4.594 

5 3 HBOth 6.128 4.25 6.388 20.27 7.370 40.74 8.625 

6 3 HBOth 8.6 3.11 8.868 14.59 9.855 29.32 11.121 

1 1 HBShp 0.452 0.30 0.453 0.50 0.454 1.00 0.457 

2 1 HBShp 0.72 0.30 0.722 0.50 0.724 1.00 0.727 

3 1 HBShp 0.753 0.30 0.755 0.50 0.757 1.00 0.761 
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4 1 HBShp 1.075 0.30 1.078 0.50 1.080 1.00 1.086 

5 1 HBShp 1.559 0.30 1.564 0.50 1.567 1.00 1.575 

6 1 HBShp 2.15 0.30 2.156 0.50 2.161 1.00 2.172 

2 2 HBShp 0.86 2.05 0.878 9.26 0.940 18.61 1.020 

3 2 HBShp 1.355 4.25 1.413 20.28 1.630 40.75 1.907 

4 2 HBShp 1.752 3.66 1.816 17.31 2.055 34.78 2.361 

5 2 HBShp 1.58 2.11 1.613 9.56 1.731 19.20 1.883 

6 2 HBShp 1.924 0.53 1.934 1.65 1.956 3.31 1.988 

1 3 HBShp 0.57 1.92 0.581 8.63 0.619 17.34 0.669 

2 3 HBShp 1.161 0.64 1.168 2.22 1.187 4.45 1.213 

3 3 HBShp 1.075 3.36 1.111 15.83 1.245 31.81 1.417 

4 3 HBShp 1.075 4.35 1.122 20.80 1.299 41.80 1.524 

5 3 HBShp 1.559 4.25 1.625 20.27 1.875 40.74 2.194 

6 3 HBShp 2.15 2.56 2.205 11.83 2.404 23.78 2.661 

1 1 NHBNW 0.892 0.30 0.895 0.50 0.896 1.00 0.901 

2 1 NHBNW 1.247 0.30 1.251 0.50 1.253 1.00 1.259 

3 1 NHBNW 1.828 0.30 1.833 0.50 1.837 1.00 1.846 

4 1 NHBNW 2.15 0.30 2.156 0.50 2.161 1.00 2.172 

5 1 NHBNW 2.473 0.30 2.480 0.50 2.485 1.00 2.498 

6 1 NHBNW 2.795 0.30 2.803 0.50 2.809 1.00 2.823 

2 2 NHBNW 1.613 2.40 1.652 11.03 1.791 22.16 1.970 

3 2 NHBNW 1.914 1.10 1.935 4.52 2.001 9.08 2.088 

4 2 NHBNW 2.87 0.36 2.880 0.78 2.892 1.57 2.915 

5 2 NHBNW 3.591 1.54 3.646 6.69 3.831 13.44 4.074 

6 2 NHBNW 4.171 4.61 4.363 22.08 5.092 44.37 6.022 

1 3 NHBNW 1.054 4.73 1.104 22.68 1.293 45.58 1.534 

2 3 NHBNW 2.118 4.55 2.214 21.77 2.579 43.75 3.045 

3 3 NHBNW 2.634 3.71 2.732 17.60 3.098 35.38 3.566 

4 3 NHBNW 2.903 3.62 3.008 17.11 3.400 34.39 3.901 

5 3 NHBNW 3.118 4.25 3.250 20.27 3.750 40.74 4.388 

6 3 NHBNW 3.44 3.88 3.573 18.42 4.074 37.02 4.714 

3.4 Mode Choice Modifications 

Current WF travel model uses a nested multinomial logit mode choice model to estimate 

the split among non-motorized (walk/bike) and motorized (auto and transit) trips. Figure 3.5 

illustrates model layout. The mode choice model estimates the modes of travel separately for 

HBW, HBO, HBC and NHB trips. The mode choice model also evaluates the mode of a trip 

separately for peak (AM plus PM) and off-peak (MD plus EV) periods. Mode choice model 

coefficients vary by trip purpose but not by time period. Differences in time-period utilities are 

handled by the mode-specific constants. For this research, a new mode —MaaS – was created to 
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accommodate SAVs in the current mode choice model. The MaaS mode is added as a new 

branch within the motorized branch. The layout of the new mode choice model is shown in 

Figure 3.6.  

The MaaS utility function is calculated based on in-vehicle time, initial pick-up time, 

operating cost (i.e. the distance-based cost, time-based cost, and initial fee), cost split factor, and 

pick-up time factor. Table 3.3 through Table 3.6 show the values used for these variables and 

coefficients across different scenarios. The in-vehicle time is reduced to make travel time less 

burdensome for MaaS compared to conventional transportation modes. The operating cost of 

MaaS for the base scenario is based on current Uber and Lyft fares in Salt Lake City, Utah. All 

rates are in 2010 dollars. For medium- and high- MaaS market-penetration scenarios, operating 

cost is reduced reflecting a less expensive SAV mode. Variable initial pick-up time based on area 

type is used for MaaS across all scenarios. The initial pick-up time is the time spent after a 

passenger is dropped off and prior to the next passenger pickup. It is lower in a Central Business 

District (CBD) than in Urban and Rural areas due to availability of more MaaS mode. For shared 

rides, cost split factor is used to split the operating costs between passengers. Moreover, a pick-

up time factor is utilized to penalize initial pick-up time for MaaS shared ride modes. 
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Figure 3.5 Current WF Mode Choice Model 

 

 

Figure 3.6 Modified WF Mode Choice Model for Accommodating SAVs 



37 

 

Table 3.3 MaaS In-Vehicle Time Values across Different Scenarios 

Trip Purpose 
In Vehicle Time for Scenario 

Base Low Mid High 

HBW -0.045 -0.0405 -0.036 -0.0315 

HBO -0.035 -0.0315 -0.028 -0.0245 

NHB -0.04 -0.036 -0.032 -0.028 

HBC -0.025 -0.0225 -0.02 -0.0175 

 

Table 3.4 MaaS Operating Cost across Different Scenarios 

Cost Type 
Operating Cost for Scenario 

Low/Base Mid High 

Distance-Based Cost ($/mile) 0.679 0.611 0.543 

Initial Fee ($) 2.590 2.331 2.072 

Time-Based Cost ($/min) 0.174 0.157 0.139 

 

Table 3.5 MaaS Initial Pick-up Time in Different Area Types Across Scenarios 

Area Type 
Scenario 

Low/Base Mid High 

CBD Core 3 3 3 

CBD  5 5 5 

Urban 8 7.2 6.4 

Urban-Rural 12 10.8 9.6 

Rural 15 13.5 12 

 

Table 3.6 Cost Split Factor and Pick-Up Time Factor for Shared MaaS Modes 

Mode Cost Split Factor Pickup Time Factor 

MaaS 2 0.7 1.5 

MaaS 3+ 0.6 2 

3.5 VMT Estimation  

VMT from MaaS vehicle repositioning occurs after a passenger is dropped off and prior 

to the next passenger pickup. Regarding additional VMT from repositioning trips, the level of 

aggregation in the four-step model makes it very challenging to accurately model repositioning 

trips within the current modeling framework. As a result, we conducted an off-model analysis to 
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estimate the additional VMT incurred due to those repositioning trips. The additional VMT for 

each MaaS trip is estimated based on initial peak/off-peak pick-up time and average speed within 

the trip origin area type. For shared ride modes additional pick-up time is considered. Equations 

3-6 and 3-7 show how additional VMT is estimated for peak period and off-peak period. 

            ∑                   

 

   

         

 

(3-6) 

 

            ∑                   

 

   

         

 

(3-7) 

where             and             denote additional VMT due to repositioning trips during 

peak and off-peak periods,           and           represent number of MaaS trips originating 

from area type   during peak and off-peak periods,           and           are average speeds 

within area type   for peak and off-peak periods, and         is the pick-up wait time within the 

area type  . 

The total VMT considering repositioning trips for MaaS mode can be calculated as follows: 

                                    (3-8) 

 

                                    (3-9) 

where             and             denote model VMT estimates for peak and off-peak 

periods. The daily VMT is calculated as the sum of off-peak and peak periods VMTs as follows: 

                                       (3-10) 

3.6 Summary 

The current version of the WF travel demand model is modified to estimate a range for 

VMT changes due to the use of SAVs. We designed three trip generation scenarios to investigate 
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low-, medium-, and high-trip generation growth. We also developed four scenarios, namely base 

case, low, medium, and high penetration to examine the impact of MaaS market penetration on 

travel choices. Finally, 12 scenarios with different combinations of trip generation growth and 

MaaS market penetration are analyzed to estimate lower and upper bound for VMT increase in 

the study region for the 2040 projection year. 
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4. RESULTS AND FINDINGS 

4.1 Overview 

SAVs can potentially increase VMT in two ways: 1) by increasing trips from underserved 

populations; and 2) by converting modal trips to MaaS which can result in higher VMT when, 

for example, transit or nonmotorized trips are shifted, or, more likely, when additional VMT is 

generated during a MaaS vehicle being repositioned after passenger drop-off. We ran 12 

scenarios of the WF travel model consisting of different combinations of trip growth rates and 

MaaS modal attractiveness. This experimental design allows us to estimate a range of VMT 

increase due to SAVs in the 2040 forecast year. Figure 4.1 shows the scenario matrix. 

 

Figure 4.1: Experimental Design 

The following sections present trip generation results, mode choice results and VMT 

estimation for these scenarios.  

4.2 Trip Generation Results  

Figure 4.2 illustrates the percentage of trip production increase due to the improved 

mobility of underserved populations for trip generation scenarios compared to the base scenario. 

Since the rates of work-based and school-based trips remain unchanged compared to the base 

scenario these trip purposes are intentionally excluded from the figure. Total number of trips 

increase by approximately 1%, 3.5%, and 7% for low-, medium-, and high-trip generation 

scenarios, respectively. Higher trip production increase is observed for HBShp and NHBNW 

Zero Low Medium High
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Medium

High

Trip 

Generation 

Effects

Mode Share Effects
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trips compared to HBOth trip purposes. This is partially explained by the discretionary nature of 

HBShp and NHBNW trips, which makes these trips more sensitive to travel cost variation. 

 

Figure 4.2 Designed Scenarios Trip Production Increase Compared to the Base Scenario  

4.3 Mode Choice Results 

Figure 4.3 illustrates daily mode shares across designed scenarios for all trip purposes. In the 

base scenario, the market split is Auto, Non-Motorized, and Transit (from high to low).  The 

market share of shared ride modes (Auto_2Plus) is higher than non-shared ride mode 

(Auto_DriveAlone). This is partially explained by the unique demographics in Utah where there 

are larger average household sizes creating more shared ride trips, usually with family members. 

Therefore, many of the shared rides can be attributed to household members travelling together.  

In those scenarios where the MaaS mode is available, the market split is Auto, MaaS, Non-

Motorized, and Transit modes (from high to low).  Auto_2Plus modes have higher shares than 

Auto_DriveAlone; similarly shared ride MaaS modes (MaaS 2Plus) have greater shares than 

non-shared MaaS mode (MaaS-RideAlone). Comparing the results of scenarios with MaaS 

available reveals that MaaS gains most of its share from Auto mode. However, there is still some 
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shift from Non-Motorized and Transit modes to MaaS. It is also observed that shared ride MaaS 

modes attract more market shares from total modal shifts than non-shared MaaS mode. All else 

equal (i.e. not accounting for the VMT associated with SAV vehicle repositioning), this leads to 

an overall reduction in VMT for the forecast horizon year. 

As expected, comparing MaaS mode share across scenarios with low-, medium-, and high-MaaS 

market attractiveness shows that reducing the generalized cost of MaaS (i.e. in-vehicle time, 

initial pick-up time, and operating cost) makes MaaS more competitive against conventional 

modes of transportation. 

 

Figure 4.3 Daily Mode Split across Designed Scenarios 

Figure 4.4 shows peak-period mode shares across different scenarios for all trip 

purposes, which exhibits a similar pattern to the mode shares across the entire day (Figure 4.3). 

However, there are smaller mode shares associated with shared rides compared to the daily 
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results due to the higher percentage of work-based trips during peak-period which are mostly 

made by non-shared modes. As a result, the MaaS mode share is slightly smaller during peak 

period than for the entire day.  

 

Figure 4.4 Peak-Period Mode Split across Designed Scenarios 

Figure 4.5 illustrates the modal split by trip purpose across Base, 

MidTripGen_MaaSLow, and MidTripGen_MaaSHigh scenarios. It can be observed that there 

are more shared ride trips (including both MaaS and Auto) for NHB and HBO trips compared to 

other trip purposes. While the majority of HBO and NHB trips are made with Auto_2Plus 

modes, most of HBW trips are done with Auto_DriveAlone mode.  

Figure 4.6 demonstrates modal shift by trip purpose from conventional transportation 

modes to MaaS. It is observed that for all trip purposes except NHB trips, MaaS competes more 

with Auto and Non-Motorized modes. For NHB trips, transit experiences the major market share 
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loss to MaaS. Comparing modal shifts across different trip purposes shows that the Auto mode 

has dramatically lost its share to MaaS mode for HBO and NHB trips.  

 

Figure 4.5 Daily Mode Split by Trip Purpose across Base, MidTripGen_MaaSLow, and 

MidTripGen_MaaSHigh 
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Figure 4.6 Modal Shift by Trip Purpose from Conventional Transportation Modes to MaaS 

Mode (MidTripGen_MaaSHigh scenario compared to the Base scenario) 

Figure 4.7 shows the variation of transit modes shares across Base, 

MidTripGen_MaaSLow, and MidTripGen_MaaSHigh. For all trip purposes, the majority of 

transit trips are made by either Light Rail (LR) or Bus Rapid Transit (BRT). For HBW trips, 

Express Bus and Local Bus Rail modes have the lowest market shares. For HBC and HBO trips, 

Express Bus and Commuter Rail modes have the lowest shares. Figure 4.8 illustrates the 

percentage of transit mode share reduction for MidTripGen_MaaSHigh scenario compared to the 

Base scenario. Across all trip purposes, Local Bus, BRT, and LR experience the main share loss 

to MaaS. Commuter Rail and Express Bus are maintaining most of their mode shares after 

MaaS’s presence.  It appears that MaaS competes more effectively with transit for shorter trips. 

This might be explained by the average shorter pick-up time for MaaS compared to transit.   
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Figure 4.7 Daily Transit Mode Split by Trip Purpose across Base, MidTripGen_MaaSLow, 

and MidTripGen_MaaSHigh  
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Figure 4.8 Daily Modal Shift by Trip Purpose from Transit to MaaS 

(MidTripGen_MaaSHigh Scenario Compared to the Base Scenario) 

Figure 4.9 shows the peak-period mode split by trip length across High TripGen 

scenarios. The MaaS and Non-Motorized modes are more desirable for shorter trips than longer 

trips. Increasing the trip length is associated with significant share drop of MaaS and Non-

Motorized modes and modal shift to various Auto modes. Comparing MaaS shares across 

scenarios with low, medium, and high MaaS penetration reveals that reducing MaaS cost 

significantly increases MaaS share for longer trips.  
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Figure 4.9 Peak-Period Mode Split by Trip Length for All HighTripGen Scenarios 

4.4 VMT Results 

  

Figure 4.10 shows the daily VMT before considering additional VMT due to 

repositioning trips across all scenarios. MaaS mode is not available in Base, LowTripGen, 

MidTripGen, and HighTripGen scenarios. Comparing VMTs of LowTripGen, MidTripGen, and 

HighTripGen scenarios with that of Base scenario shows the increase in daily VMT due to 

improved mobility of underserved populations as a result of the availability of AVs. As expected, 

the higher increase in trip rates are associated with greater increase in daily VMT.  
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Figure 4.10 Daily VMT without Considering MaaS Repositioning Trips across Designed 

Scenarios 

Introducing MaaS as a new mode to the mode choice model leads to a slight decrease in 

VMT for all scenarios with MaaS available (compared to the “zero” scenarios namely, 

LowTripGen, MidTripGen, and HighTripGen in Figure 4.1). This finding is partially explained 

by slightly higher modal shift to MaaS_2Plus modes than modal shift to MaaS_RideAlone. As 

discussed above, this finding relies in part on the unique demographics in Utah households and 

may not accurately account for additional factors discouraging a “pool” mode, such as 

discomfort in traveling with strangers. Given the current modeling framework, reducing the 

generalized cost of MaaS across scenarios to represent the low, medium, and high MaaS 

attractiveness, leads to a reduction in VMT largely due to the shift from drive alone to MaaS2+. 

Additional daily VMT from trip repositioning is estimated for scenarios with the MaaS 

mode and added to the model-estimated VMT. Figure 4.11 illustrates daily VMT considering 

the additional VMT due to repositioning trips. For the MaaS scenarios, significant VMT increase 
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due to repositioning trips is observed. Moreover, higher MaaS penetration resulted in smaller 

VMT increase. This is because when MaaS is readily available, the repositioning trips would 

have shorter length (as the more distant passengers could be picked up by other MaaS).   The 

daily VMT is estimated to increase in range of 4% to 9% across designed scenarios. 

 

 

Figure 4.11: Daily VMT Considering MaaS Repositioning Trips across Designed Scenarios 

4.5 Summary 

In this research we analyzed the number of trips, modal shifts, and VMT with the 

introduction of SAVs into the regional model. Results revealed that SAVs can increase total 

number of trips up to 7% in the scenario with highest impact. Comparing modal splits across 

designed scenarios, it is showed that SAVs can cause modal shifts away from conventional 

transportation modes. Moreover, SAV can increase daily VMT up to 9% compared to the base 

scenario primarily due to the additional VMT incurred by repositioning trips. 
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5. CONCLUSION 

5.1 Summary 

In this research, we model the impact of SAVs on travel patterns in Utah in year 2040 

forecast horizon. SAV is defined as the combination of AV technology with MaaS, which offers 

a new ridesharing option for travelers. We speculate that SAVs would have two major effects on 

transportation demand: 

1. SAVs will increase the mobility of certain demographic populations, specifically 

households with children, households with elderly members, and people with mobility 

impairments. 

2. SAVs represent a new mode – MaaS – that will offer new travel option, competing with 

the automobile, transit, and non-motorized modes. 

We incorporated these effects by modifying trip generation and mode choice models of 

the WF Travel Demand Model. In the trip generation model, trip rates of households with 

children, elderly, and mobility-impaired members were increased to reflect the improved 

mobility that the AV technology provides. Overall, a range of 1-7% increase of trips has been 

estimated. In the mode choice model, a new mode - MaaS - is added, which competes for trips 

with the conventional modes – automobile, transit and non-motorized. Finally, 12 scenarios were 

designed to investigate different combinations of trip growth rates and MaaS market 

attractiveness. This experimental design allowed us to estimate a 4-9% range of VMT increase 

due to SAVs in the year 2040 forecast horizon. 

5.2 Findings 

Our results revealed that SAVs can increase the total number of trips by 1% to 7% across 

designed scenarios. Mode share comparison among scenarios showed that while MaaS can take 

market shares away from all conventional transportation modes, it competes more with auto and 
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non-motorized modes. Reducing the generalized cost of MaaS makes the mode more appealing 

against conventional modes.  Higher market shares were found for shared ride MaaS due in part 

to the larger household sizes in Utah. This finding, however, does not account for potential 

disbenefits of sharing a ride, such as discomfort in traveling with strangers. 

Analysis of modal shift by trip purpose showed that for all trip purposes except NHB 

trips, SAVs compete more with auto and non-motorized modes. For NHB trips, transit 

experiences the largest mode shift to SAVs. Among available transit modes, Bus, BRT, and 

Light Rail are the ones that experience the most market share loss to MaaS. 

Analyzing trip length distributions revealed that SAV mode is more desirable for shorter 

trips than longer ones. Moreover, while reducing generalized cost of SAVs makes the mode 

more competitive for longer trips, it does not significantly impact the share of SAVs for shorter 

trips. Lastly, it is observed that SAV increases daily VMT by 4% to 9% across designed 

scenarios due to both improved mobility of underserved population and additional VMT from 

the repositioning of vehicles towards the next rider. 

5.3 Limitations and Challenges 

In this study, several assumptions were made with regards to trip rate increase and the SAV 

utility function. In the future there is a need to verify these assumptions via survey data. SAVs 

can also promote public transport by providing first- and last- mile services reducing the extra 

time and hassle the travelers face going from their origin to the transit station and back. 

However, this research did not consider a combination of alternative transportation modes (e.g. 

SAV + transit) for trips. In addition, while SAV fleet size might have a significant impact on 

pick-up time, it is not considered in the modeling process.  

Regarding repositioning trips, an offline post-processing analysis is performed to estimate the 

number and length of repositioning trips. Note that repositioning trips were not assigned to the 

network so their impacts on congestion and traffic flow are not assessed in the modeling process. 

While SAV also impacts roadway capacity and auto ownership, we ignored these impacts in our 

study. 
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We modeled the MaaS mode choice as MaaS Alone, MaaS2, and MaaS3+. Given how 

ridesharing decisions are currently being made (e.g. Uber and Lyft), a more appropriate 

modeling approach would be to include only two MaaS choices: MaaS Alone and MaaS Pool. 

This change may affect the attractiveness of MaaS Pool relative to how it was modeled in this 

research, leading to a slight change of results. 

Additionally, security and safety concerns might present themselves due to SAV’s vulnerability 

to hacking and/or sharing a ride with strangers when there is no driver. Such impedance is not 

modeled in the study and future research could investigate the impacts of these factors on SAV 

attractiveness.  
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